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Abstract

The equations that govern geophysical fluids (namely atmosphere, ocean and rivers)
are well known but their use for prediction requires the knowledge of the initial condi-
tion. In many practical cases, this initial condition is poorly known and the use of an
imprecise initial guess is not sufficient to perform accurate forecasts because of the5

high sensitivity of these systems to small perturbations. As every situation is unique,
the only additional information than can help to retrieve the initial condition are observa-
tions and statistics. The set of methods that combine these sources of heterogeneous
information to construct such an initial condition are referred to as data assimilation.
More and more images and sequences of images, of increasing resolution, are pro-10

duced for scientific or technical studies. This is particularly true in the case of geophys-
ical fluids that are permanently observed by remote sensors. However, the structured
information contained in images or image sequences is not assimilated as regular ob-
servations: images are still (under)utilized to produce qualitative analysis by experts.
This paper deals with the quantitative assimilation of information provided in an image15

form into a numerical model of a dynamical system. We describe several possibilities
for such assimilation and identify associated difficulties. Results from our ongoing re-
search are used to illustrate the methods. The assimilation of image is a very general
framework that can be transposed in several scientific domains.

1 Introduction20

For more than six decades, following the works of J. Von Neumann and J. Charney,
the fluid envelope of the Earth has been described by mathematical models giving
the evolution of its state variables: wind, temperature, pressure and moisture for the
atmosphere, current, temperature, salinity and surface elevation for the sea. Models are
routinely used for prediction and the level of prediction has been dramatically improved25

over the last few years.
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For more than five decades, the fluid envelope of the Earth has been observed by
satellite providing a long time and total coverage of the ocean and of the atmosphere.
Billions of images have been produced, some of which are exhibited in art galleries
showing the beauty of our Earth. These images and their dynamics show complex
structures in different areas: tropical depressions, storms at mid-latitudes but also tem-5

perature, salinity and phytoplankton blooming in the ocean. These images are often
used in meteorological bulletins on TV to illustrate the evolution of the weather. Thus
they are important for a qualitative understanding of the evolution of the weather.

Images and models describe the same objects but with different tools. Images are
often used to verify models – in general in fluid dynamics and turbulence – but it is done10

in a qualitative way rather than in a quantitative one. Both models and experiments
display, for instance, images of Kelvin waves showing that models can mimic nature.
But to what extent? How is it possible to quantitatively compare images of Kelvin waves
observed from experiments and images from numerical models?

Over more than two decades, data assimilation has progressed into a very important15

development which is considered as the main reason for the improvement of forecasts.
By data assimilation, we mean all the methods able to link together all the available
information on geophysical fluids:

1. mathematical information provided by models

2. physical information provided by in-situ or remote observations20

3. statistical information issued both from observations and from past predictions

4. a priori information, e.g. the regularity of the fields.

For many years, numerical models and images have both been used for a qualitative
prediction. However, the structured information borne by images and by models are not
presently used together in a quantitative framework.25

The purpose of this paper is Direct Image Assimilation, which can be summarized
as: How to couple the information provided by numerical models and the information
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provided by images? And the dual problem: how to validate mathematical models of
flows using images and their dynamics. By validating, we mean a quantitative valida-
tion and not just a qualitative one. We must deal with a very general problem arising
in many other fields out of geophysical problems. In nature, every situation is unique;
steady state or asymptotic solutions do not exist. Most of the time, this assumption of5

uniqueness is implicitly used in modeling. Because of the enhancement of modeling,
this fact will become crucial. In many cases, the initial condition and/or boundary condi-
tions can not be experimentally controlled and consequently mathematical models are
not sufficient to give an accurate representation of the situation. More information must
be added and inserted into models. Images are, in some situations, candidates for this10

purpose. For engineering problems, the unknown conditions may be some parameters
which have to be identified as a solution of an inverse problem, a methodology which
can be included in data assimilation as it is. Nevertheless, this paper will be more
oriented towards applications to geophysical fluids. The remaining part of the paper
is organized as follows: Sect. 2 gives a brief description of the observation by satel-15

lites. Section 3 is devoted to a brief introduction to data assimilation using variational
methods. It also describes the characteristics of satellite observations in the sense of
data assimilation. Section 4 describes the use of images as the source of pseudo-
observations in data assimilation. Section 5 gives a methodology for direct assimilation
of images and introduces the notion of an observation operator for images. Examples20

of such operators are given in Sect. 6 as well as associated numerical results. Section 7
concludes the paper.

2 Satellite observations

At the present time, more than forty satellites are continuously scanning the atmo-
sphere and the ocean. As an illustration, Fig. 1a gives the number of observations25

provided by satellites and its evolution from 1996 to 2010.
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2.1 Classification of satellites

Satellites can be classified according to many criteria: usage and orbit characteristics
are the major criteria. In terms of usage, we are interested in earth observation and
weather satellites. The next section gives a brief description of data provided by those
satellites. In terms of orbit characteristics, the most important are the altitude and the5

inclination (in reference to the equatorial plane). The altitude and the inclination define
the resolution, the coverage, and the acquisition conditions (local solar time at the
acquisition point) of the measurement instruments on board the satellite. Most of the
earth observation and weather satellites can be classified as geostationary or polar
orbiting:10

1. Geostationary satellites. They are synchronous with Earth rotation, consequently,
because of the Coriolis force, they are necessarily located above the equator at an
altitude of ∼ 35786 km. Their position above the equator makes it almost impossi-
ble to observe polar regions and the high altitude does not allow acquisition in the
microwave band. The spatial resolution of measurements is fine at the equator15

and degrades gradually as one moves away. Their stationary position above the
earth makes it possible to get frequent measurements at the same point. At the
current time, most of the operational weather geostationary satellites provide a full
image of their coverage area every 15 min. The coverage area for such a satellite
is about the quarter of the surface of the Earth. There are presently around ten20

geostationary satellites, each one observing a part of the Earth. Most of the visual
information displayed on weather bulletins on TV are issued from these satellites.
They clearly show the evolution of the large scale air masses, the birth of trop-
ical depressions and hurricanes and, even at a local scale, the development of
thunderstorms. Figure 1b shows the coverage of the Earth by observations from25

geostationary satellites.

2. Polar orbiting satellites. These satellites have an altitude between 400 and
800 km. At that elevation, they can cover the broad spectrum of radiation including
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the microwave range as opposed to geostationary satellites. Also, the spatial res-
olution of measurements is very fine thanks to the low altitude. However, the ge-
ographical coverage is quite narrow at a given time. Also, the time resolution is
coarse. In some orbits, it takes several days for the satellite to travel above the
same point. They need several orbits to cover the entire globe. These satellites5

pass over the poles at each revolution, making it possible to get information more
frequently in those areas not covered by geostationary satellites and almost in-
accessible by conventional instruments. According to their inclination, they can
be divided into subclasses. The subclass that draws attention is the subclass
of sun-synchronous orbit. The polar sun-synchronous satellites pass the equa-10

tor at the same local time on every pass. Those satellites are useful for imaging
and weather. Figure 1c shows the distribution of observations from polar orbiting
satellites equipped with the AMSU-A sensor.

2.2 Content of satellite measurements

Satellite sensors measure radiation reflected or emitted by the Earth, the seas or the15

atmosphere. The measured radiations are reflected light for visible channels and ra-
diance for infrared channels. Depending on the wavelength employed, the measured
radiations quantify a variable or a set of variables of the studied system. They can
therefore be considered as observations in the sense of data assimilation.

In visible channels, satellites measure the reflective properties of the observed sys-20

tem (see Fig. 6). This is often limited to the upper layer of clouds. If the atmosphere
is not cloudy, the observed surface can be extended to the Earth and sea surface.
The observation of the sea in the visible channel produces the sea surface color (see
Fig. 2). It shows the concentration of the phytoplankton in a thin upper layer of the sea.
In infrared channels, satellites measure an integration over a certain thickness of the25

emissive properties of the observed system. Examples are water vapor images in the
atmosphere and the sea surface temperature (SST) images. The integration thickness
is highly dependent on the observed system. The sea is impervious to electromagnetic
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waves making measurements to be limited to a very thin layer of the sea surface. SST
measurements, for example, are limited to only a few millimeters of the sea surface.
This thickness is negligible compared to the thickness of the top layer in numerical
models of the sea, which can extend to some hundred meters. Data like the SST are
thus more related to interactions between the sea and the atmosphere than to the sea5

state variables. For the atmosphere, the probed layer can extend to its full thickness
under the satellite. In the case of water vapor, the thickness of the probed layer is more
important than in the case of the SST, but depends on the distribution of moisture in
the atmosphere. Some specialized satellites provide more complex data, an example
is the Jason type satellites that give the sea surface elevation with a precision of some10

centimeters.
As opposed to in-situ measurement devices that usually acquire observations at

a single point at each time, satellite measurements provide observation of a large area
at the same time. Thus, these satellites provide the image of their coverage area by the
radiation function at each time. For this reason, satellite observations are usually called15

images. Subsequently, the expression “satellite image” means satellite observation.

3 Data assimilation

3.1 Definition of data assimilation

By data assimilation, we mean the methods permitting the best retrieval of the state of
the environment, a mandatory step prior to prediction. From the formal point of view,20

the problem is to link heterogeneous sources of information, the heterogeneity bearing
on the nature, the quality and density. Basically we have:

1. Mathematical information. This is the model which is used to describe the flow.

2. Physical information. It is given by data issued from in situ or remote measure-
ments such as images.25
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3. Statistical information. It could be produced from statistics on the observations as
well as statistics on the outputs of the model.

4. A priori information, for instance on the regularity of the fields or the existence of
singularities. More generally, qualitative information used in the analysis.

Basically, there are two approaches of data assimilation methods for combining all the5

previously mentioned information:

1. Approaches derived from the Kalman filter. They are based on Bayesian esti-
mation and are of great theoretical importance, but having to deal with a huge
covariance matrix, they are not implemented in operational centers.

2. Variational approaches. They are based on optimal control and the calculus of10

variations. These methods are presently used by most important operational cen-
ters for weather prediction. They seem well adapted for the assimilation of images
and, in the sequel, we will only consider the variational approaches.

3.2 Variational data assimilation

The ingredients of variational data assimilation are:15

– A model describing the evolution of the state variable X ∈ X . The model is usually
given as a system of partial differential equations (PDE) of the form:

dX
dt

=M(X), t ∈ [0,T ],

X(0) = U,
(1)

where the initial condition U ∈ X is unknown, X is the state space and M is the20

model operator. For illustration, in the case of atmospheric systems, the state
variable X represents variables such as wind, temperature, pressure, etc., and
the dynamic model M describes the set of physical laws that the variables must
respect over time. These laws are: thermodynamics laws, conservation laws, etc.
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– A set of observations Y
o given by physical measurement (direct or indirect) of

the system state. For the sake of simplicity, we will assume observations to be
continuous in time:

Y
o : R+ →O,

t 7→ Y
o(t);

(2)
5

– An operator of observation H: observations are usually made up of partial or
indirect measurements of the state variables. The observation space O is not
necessarily the same as the state space X . The observation operator H is defined
as the mapping operator from X onto O:

H : X →O
X(t) 7→ Y (t) =H[X(t)].

(3)10

– A background estimation U
b of the initial state U. In operational meteorology, this

background estimation can be deduced from previous forecasts.

– Statistical information, for instance the error covariance matrix Q of the observa-
tion error and the covariance matrix B of the background estimation.15

Variational data assimilation (VDA) defines the optimal initial condition U
a as:

Ua = argmin J(U), (4)

where the so-called cost function J is defined as:

J(U) =
1
2

T∫
0

‖ H[X(t)]−Y o(t) ‖2
Q−1 dt+

1
2
‖ U −Ub ‖2

B−1 , (5)20

with the norms ‖Y ‖Q−1 =‖Q− 1
2Y ‖ and ‖U‖B−1 =‖B− 1

2U‖.
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The cost function contains two terms: the first one is the discrepancy between ob-
servations and the solution of the model associated with the initial condition U. The
second one is the background term. It will require the solution to be located in the
vicinity of Ub. It is also a regularization term in the sense of Tikhonov (1963). This term
is mandatory due to the ill-posedness of the problem. In operational meteorology, the5

dimension of the state vector, and consequently the dimension of the initial condition,
is of the order of one billion while the number of daily observations is of the order of ten
millions. Therefore we would have to deal with a severely ill-posed problem (as defined
by Hadamard) if the regularization were not introduced. A necessary condition for the
optimality is given by the Lagrange–Euler equation:10

∇J(Ua) = 0, (6)

this is also a sufficient condition if J is strictly convex and coercive. This is the case
if we have a linear model but realistic models are nonlinear in general. Solving the
Lagrange–Euler equations requires the gradient ∇J of the cost function. The main15

difficulty is that J is an implicit function of U. In VDA, ∇J is computed through the
adjoint variable P , which is defined as the solution of the adjoint model:

dP
dt

+
[
∂M
∂X

]∗
·P =

[
∂H
∂X

]∗
.Q−1(H(X)−Y o), t ∈ [0,T ]

P (T ) = 0,
(7)

where the ∗ denotes the adjoint operator. The adjoint model is deduced from the direct20

model Eq. (1) using calculus of variations based on the Gateaux derivatives, see Le
Dimet and Talagrand (1986) for details. The gradient of the cost function ∇J(U) is given
by

∇J(U) = −P (0)+B−1(U −Ub). (8)
25

The gradient is then used in an optimization algorithm (Truncated or Quasi-Newton
methods, L-BFGS) to compute an estimate of the optimal solution.
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3.3 Satellite observations and data assimilation

Observations that are quantitatively used in data assimilation are usually limited to
measurements of the state variables, such as wind, moisture and pressure given by
terrestrial centers for meteorological prediction. These observations will be named con-
ventional in the subsequent. Apart from conventional observations, there exists another5

class of observations that is mainly used only for qualitative purposes: these are im-
ages. Among the various sources of images, satellites plays an important role for the
observation of the atmosphere and seas.

As we mention in Sect. 2.2, satellite observations or satellite images are indirect
measurements of the state variables of observed systems like the atmosphere or the10

sea. Thanks to post processing, they can be converted into observations of the asso-
ciate variables. As an example, Fig. 2 shows the SST and the chlorophyll concentration
derived from MODIS (on board satellite Aqua) observation of the Gulf Stream. MODIS
stand from Moderate-resolution Imaging Spectroradiometer; it is a 36-channels scien-
tific instruments that equips NASA satellites Terra and Aqua.15

Thanks to their high resolution and their spatial coverage, satellite images also pro-
vide information on structures ranging from mesoscale to synoptic scale. Structure
refers to the spatial organization of individual measurements. A sequence of images
shows the dynamical evolution of the structures. As example, in addition to the SST
and the chlorophyll concentration, Fig. 2 shows a couple of large Gulf Stream eddies.20

The similarity of observed structures between SST (infrared channel) and Chlorophyll
concentration (visible channel) shows that such information can be obtained from dif-
ferent measurements. The example of Fig. 6 shows a depression over western Europe
and its evolution from 28 April to 29 April 2008. The observed structures (eddies for the
sea, depression for the atmosphere, etc.) represent Lagrangian information and are25

clearly useful for the prediction of the observed system. From the above description,
we can distinguish two major types of satellites observations:
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1. indirect measurements of the state variables of observed systems;

2. characteristic structures of the observed system and their dynamics.

3.3.1 Satellite observations as indirect measurements of the state variables

From this point of view, one can derive two approaches for using satellite observations.
The first approach consists in extracting the variables that are indirectly observed and5

use them as conventional observations in a model that contains those variables in the
system state. The second approach consists in modeling an appropriate observation
operator that computes radiance from the system state given by the model. In both
cases, satellite observations are used as conventional observations; this considera-
tion will not be taken into account in the rest of this paper. The two cases are subject10

to some problems including: the difficulty of extracting variables from indirect mea-
surements or modeling the appropriate observation operator; the sensitivity of satellite
measurements to acquisition conditions. For example, a substantial cloud cover makes
the error rate prohibitive in the observations of temperature and moisture of the at-
mosphere. In these cases, measurements are used to derive other products such as15

velocity fields (atmospheric motion vector or AMV). However the combination of four
Dimensional Variational Data Assimilation (4D-VAR) and the use of satellite measure-
ments has significantly improved the forecasts as shown by Fig. 3. This figure shows
the anomaly correlation at 500 hPa height for 3, 5 and 7 days forecast between the
years 1992 to 2007. Before the year 2000, there was a significant difference between20

the forecast in the Northern Hemisphere (high performance) and Southern Hemisphere
(poor performance). The difference was due to the lack of conventional observation in
the Southern Hemisphere. In the early 2000s, the introduction of satellite observations
in data assimilation made it possible to get the same performance in both hemispheres.
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3.3.2 Satellite observations as characteristic structures of the studied system
and their dynamics

This is the approach that will be developed in the rest of this paper. In this case, satel-
lite measurements can not simply be used as conventional observations. In fact, as
structures refer to the spatial organization of individual measurements, a single mea-5

surement is useless. Similarly, as the dynamics refers to the evolution of measurements
in time, a single image is not sufficient. However, the observed structures are indirectly
present in the model output, provided with appropriate initial conditions and other pa-
rameters of the model. The question that arises is: how to use such information in
data assimilation? The answer to this question is the assimilation of images. This is10

a concept that emerged recently with the aim of using images as observations in data
assimilation. There are two basic approaches:

1. Assimilation of pseudo-observations. In a first step, the images are analyzed. The
results of the process is a field of velocities obtained by the comparison of two or
several successive images. In a second step, these velocities are assimilated as15

conventional observations in a classical method of data assimilation.

2. Direct assimilation of images. Images (image structures) are considered as con-
ventional observations and assimilated as such. To do so, depending on the ap-
plication, we need to define an adequate mathematical space in which images or
image structures will be modeled. Corresponding observation operators that map20

the control space into the structure space should be constructed. The structure
space must conserve and extract the most pertinent information of the images. If
we want to remain in the framework of optimal control methods, then the space
must be defined in such a way that the rules of differential calculus can be ap-
plied. It is also important to underline that, for computing purposes, the space25

dimension should not be too large.
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In both cases, a preliminary step for using images in data assimilation is the identifica-
tion of the underlying process. However, this paper does not focus on this preliminary
step; instead, it focuses on the mathematical aspects of the use of images in data as-
similation. Before moving forward, let us give some illustrations of the importance of
that preliminary step. Lenticular clouds may be observed under the wind over a moun-5

tain; they are an Eulerian property of an area where there is condensation of water
vapor. These clouds appear to be quasi-stationary, consequently if they were used as
a Lagrangian tracer, they would lead to a small wind velocity. Such an analysis would
be a misinterpretation of reality as these clouds are actually the signature of a strong
wind. This is also the case of some small cumulus clouds that can appear at the vertical10

edge of some crops with strong radiative properties. They are the signature of a local
vertical convection and therefore are not useful for retrieving horizontal velocities. It is
important to mention that phase errors and joint phase-amplitude should be considered
in the assimilation of remote measurements. This issue is not addressed in this paper
as it is not the main topic of this paper. However, there is a significant literature on the15

topic that can be of interest to the reader (Hoffman et al., 1995; Hoffman and Grassotti,
1996; Brewster, 2003a, b; Ravela et al., 2007).

4 Images as source of pseudo-observations in data assimilation

4.1 Principle of assimilation of pseudo-observations

Since the early 80’s with the works of Horn and Schunck (1981), research has been20

carried out to derive velocity fields from images sequences, with applications to fluid
dynamics mainly (and very recently to movie compression and medical imagery). The
velocity field derived from the image processing techniques can be used as pseudo-
observations of wind in an assimilation system, for instance in a regular VDA scheme.

The left panel of Fig. 7 shows the principle of assimilation of pseudo-observations25

of velocity fields. From a sequence of images, a velocity fields is estimated and used
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as observation of the velocity field in a regular scheme of data assimilation. There are
several methods to extract a velocity field from a sequence of images. They can be
divided into two categories: the frame-to-frame motion estimation and the so-called im-
age model technique. Motion estimation or frame-to-frame motion estimation is a tech-
nique from image processing that aims at estimating the velocity field that transports5

an image to another. A mathematical description of this technique is given in Sect. 4.2.
From frame-to-frame motion estimation, one gets a velocity field between each pair of
successive images of a sequence, but there is no guarantee of consistency in the re-
sulting sequence of fields if it is applied to many pairs of images of the same sequence.
In such cases, the image model technique can be more appropriate. It couples the10

frame-to-frame technique with an evolution model for the velocity field. For details on
this technique, the reader is referred to Herlin et al. (2006); Huot et al. (2006); Korotaev
et al. (2007).

4.2 Frame-to-frame motion estimator

The description of motion estimation in this paper is limited to optical flow. It is a vari-15

ational method and is well suited for image sequences in geophysics. There also exist
statistical methods based on the correlation between successive images. For more
information on those methods, the reader is referred to Adrian (1991) that describes
the commonly used one: Particle Image Velocimetry (PIV). Optical flow is a classical
method of motion estimation. It is based on the conservation of the global luminance20

between two images (Horn and Schunck, 1981). Let I : Ω×R → R be the luminance
function defined on the pixel grid Ω ⊂ R2 and the time t ∈ R, the optical flow is the vector
field V (x,y) that satisfies the luminance conservation given by the following equation:

dI
dt

=
∂I
∂t

+∇I · V = 0. (9)
25

According to the nature of the images, the law of conservation of the luminance Eq. (9)
can be replaced by a specific law. For example, with images of the ocean’s color,
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conservation of chlorophyll (with source and sink terms) can be considered; with im-
ages of Sea Surface Temperature (SST), the Boussinesq approximation can be used,
etc. In many cases, the validity of these laws, from the optical point of view, is dubious.
For instance, between two satellite images, the enlightenment will have changed and
some corrective term will have to be added to the equation. As a consequence, it is5

necessary to carry out a preliminary study of the images to detect structures on which
the information borne by the equation of conservation and the images is maximized.
For instance, if we are working with Sea Surface Temperature (SST), filaments are im-
portant structures which have to be identified in the analysis. They are characterized
by: elongated structures, constant temperature, significant contrast with the surround-10

ing area, and motion by translation. To identify filaments, it is necessary to use the tools
of mathematical morphology (Serra, 1988; Najman and Talbot, 2010). In the images,
it will also be necessary to discard points with a weak spatial gradient or with a weak
temporal evolution. Detecting and/or eliminating structures from the images requires
the application of a thresholding operator (e.g. on the norm of the gradient of the SST).15

Of course, the analysis will be sensitive to the threshold value chosen. The choice of
the threshold is usually empirical.

For a two dimensional problem, the velocity field V = (u,v) is determined as the
solution of an optimization problem. To this end, one defines a cost function J to be
minimized as follows:20

J(u,v) =
1
2

T∫
0

∫
Ω

[
∂I
∂t

+u
∂I
∂x

+ v
∂I
∂y

]2

dxdydt. (10)

A necessary condition for optimality is expressed by the Euler–Lagrange equations that
involve the gradient of J with respect to u and v . For the cost function of Eq. (10), the
Euler–Lagrange equations give the solution V

∗ = (u∗,v ∗) as the solution of the linear25
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system:

u
[
∂I
∂x

]2

+ v · ∂I
∂x

· ∂I
∂y

= −∂I
∂t

· ∂I
∂x

(11)

u · ∂I
∂x

· ∂I
∂y

+ v ·
[
∂I
∂y

]2

= −∂I
∂t

· ∂I
∂y

. (12)

The determinant det of this system and the determinants detu and detv relative to5

unknowns u and v are all zero, meaning that the solution is not unique. The problem
is ill-posed. In fact, let V = (u,v) be a solution of the non regularized problem, and
W = (w1,w2) a vector fields, orthogonal to the image gradient, i.e. (〈W ,∇I〉 = 0). We
have:

J(V +αW ) = J(V ),∀α ∈ R. (13)10

As a consequence, it is impossible to determine the motion in the direction orthogonal
to the image gradient: this is the aperture problem that is well known in computer vision.
It is a source of ill-posedness. To address the ill-posedness, regularization techniques
are used. The literature on the regularization for image processing is very large. The15

references Tikhonov (1963), Horn and Schunck (1981), Alvarez et al. (1999), Nagel
(1983), Schnörr (1994), Suter (1994), Weickert and Schnörr (2001), Black and Anan-
dan (1991), Hinterberger et al. (2002), and Mémin and Perez (1998) give a start point
for the interested reader.

5 Direct assimilation of images20

5.1 Mathematical formulation

By direct assimilation of images, we mean using image observations directly in the cost
function of variational data assimilation. In this case, image observations are jointly
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used with conventional observations to compute the optimal control variable of nu-
merical models. The right panel of Fig. 7 shows a schematic representation of direct
assimilation of images. Images are used directly in the optimality system jointly with
conventional observations. This direct use of images in the optimality system requires
the definition of a mathematical space for the images with adequate topology and the5

associated images observation operator. An images observation operator is a map-
ping from the space of the numerical solution of the model toward the space of images.
No prior step to extract pseudo-observations of state variables is needed. Direct as-
similation of images requires the modification of the cost function in order to take into
account the image observations. The cost function that takes into account images can10

be written as follows:

J(X0) =
1
2

T∫
0

‖H (X(t))−Y o(t)‖2
Q−1 dt

︸ ︷︷ ︸
conventional cost

+
1
2

T∫
0

‖HX→F (X(t))− f (t)‖2
F dt,

︸ ︷︷ ︸
image cost

(14)

where f (t) is the image function at time t, ‖.‖F is the appropriate norm in the image15

space F , and HX→F is the observation operator for images; subsequently, it will be
called the model to image operator. In Eq. (14), the background and regularization
terms are omitted for sake of clarity. The regularization term will be the canonical one
in VDA.

1398

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/1381/2014/npgd-1-1381-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/1381/2014/npgd-1-1381-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 1381–1430, 2014

Toward the
assimilation of

images

F.-X. Le Dimet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

5.2 Observation operators for images

A first consideration of the image cost function is to take the norm of the left hand side
of the equation of the optical flow Eq. (9). The image is considered as a passive tracer
moving with respect to the dynamics of the system, and more precisely with the motion
field V . This approach, proposed in Béréziat and Herlin (2011); Papadakis and Mémin5

(2008); Gorthi et al. (2011) leads to the following image cost function:

1
2

T∫
0

∫
Ω

∥∥∥∥∂I∂t +∇I · V
∥∥∥∥2

Q−1
dxdydt. (15)

This cost function can not be turned easily into the form suggested by Eq. (14). The
covariance matrix Q is defined with respect to the image gradients ∇I in order to re-10

strict image information to pertinent areas containing discontinuities. If the model M
is monotone and ensures the spatio-temporal continuity of the state X(t), the regular-
ization of the flow V at time t now only depends on the regularity of the background
condition V 0.

Due to the characteristics of images, they should not be used directly as an array of15

pixels in the cost function. Specific structures of the image, such as lenticular clouds
mentioned above, may have their own dynamics. In such cases, image observations
can not simply be considered as a passive tracer moving under the dynamics of the
studied system. It is also important to point out that from a dynamical point of view,
information in an image sequence are located in discontinuities and the dynamics of20

those discontinuities. Even with advanced covariance matrices, the pixel representation
of images is not suitable to describe such phenomena in data assimilation. Additional
operators should be used to isolate structures of interest from the image. In this case,
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the cost function Eq. (14) takes the form:

J(X0) =
1
2

T∫
0

‖H (X(t))−Y o(t)‖2
Q−1 dt

︸ ︷︷ ︸
conventional cost

+
1
2

T∫
0

‖HX→S (X(t))−HF→S (f (t))‖2
S dt,

︸ ︷︷ ︸
image cost

(16)

where S is the space of features of interest to be isolated from the image. This notation5

is borrowed from Titaud et al. (2009) where such a space is called the “space of struc-
tures”. HF→S is the image to structure operator and HX→S is the model to structure
operator.

Image to structure operator: The goal of such an operator is to extract features of
interest from image observations. As we said previously, the main information obtained10

by human vision from the image is located in the discontinuities. A definition of S must
be related to the discontinuities in the image function. Discontinuities are well charac-
terized in spectral spaces. Thus, the basic definition of S may be based on a spectral
decomposition such as Fourier, wavelet or curvelet.

Model to structure operator: This operator extracts features of interest from the sys-15

tem state given by the model. It can be defined as:

HX→S =HF→S ◦HX→F , (17)

where HX→F is the model to image operator previously defined. Setting the image to
structure operator to be the identity (HF→S = Id ), we get the cost function given by the20

Eq. (14). Another approach of using image observation in Laboratory data assimila-
tion can be found in Ravela et al. (2010). The authors used computer vision system to
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extract measurements from the physical simulation with parallel computing and decom-
position to account for observation in real time as well as using the numerical model to
adapt the observing system.

5.3 Adjoint model in direct image assimilation

When the image term is added to the cost function, Eq. (16), the adjoint model of5

variational data assimilation, Eq. (7) becomes:

dP
dt

+
[
∂M
∂X

]∗
·P =

[
∂H
∂X

]∗
.Q−1(H(X)−Y o)︸ ︷︷ ︸

conventional forcing term

+
[
∂HX→S

∂X

]∗
.
(
HX→S [X]−HF→S [f ]

)
︸ ︷︷ ︸

image forcing term

P (T ) = 0,

(18)

The expression[
∂HX→S

∂X

]
, (19)10

is the Jacobian of the model to structure operator. The presence of this expression
means that the model to structure operator must be differentiable. Then we can com-
pute its Jacobian and the gradient of the cost function in order to be able to carry out
an optimization algorithm and identify the optimal initial condition.15

6 Examples of direct image assimilation techniques

In this section, we describe two tools that can be used to construct observation opera-
tors. The first method uses the advection of a passive tracer whose concentration map
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is considered as the image. This method is well adapted for assimilating a sequences of
images. The second method uses the computation of Lagrangian Coherent Structures
(LCS) of the flow. This method exploits the integrated information contained in tracer
images and is well suited for single image assimilation. We will also discuss different
examples of mathematical spaces for image structures. All the associated topologies5

will be of L2-type. The main purpose of this choice is its convenience; other choices,
e.g L1 that is commonly used in image processing, could be considered. Also the ques-
tion of introducing some covariance matrix into the definition of the topology remains
open. The choices shown below are not exhaustive. Many other potential spaces could
be considered. The choice of the mathematical space for images defines the image to10

structure operator that has been introduced in the previous section.

6.1 Observation operators based on the advection of passive tracer

In this subsection, we consider the case where the model to structure operator can
be decomposed into a model to image operator and an image to structure operator.
We focus only in the image to structure operator that is the most important as stated15

in Sect. 5. A simple example of the model to image operator can be defined by con-
sidering images as observations of a passive tracer. Image evolution is then modeled
by a transport equation, the initial distribution of the passive tracer being given by the
first image. Interpolation from the grid points of the numerical model toward the grid
points of the image can be necessary. In this case, an image is considered as the20

concentration of the passive tracer.

6.1.1 Pixel representation of image

The pixel representation of a 2-D image is a discretization (numerical representation)
of a mathematical function of two variables that defines the image. It is usually given
as a 2-D array, each entry of the array being the value of the image at the associated25

grid cell of the discretization. The simple case of image assimilation is to consider the
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identity image to structure operator. In this case, the cost function associated with the
image will take the form:

J(U) =
1
2

T∫
0

‖HX→F (X(t))− f (t)‖2
F dt (20)

where, HX→F defines the concentration of the passive tracer from the system state and5

f is the observed concentration (image) at time t. In this case, the image is considered
as an array of Eulerian observations of the tracers and the features of the dynamics
(fronts, vortices, etc.) are not explicitly taken into account.

6.1.2 Multiscale analysis of images: curvelets

Recent years have seen a rapid development of new tools for harmonic analysis. For10

general fluid dynamics and also for geophysical flows, there are coherent structures
evolving in an incoherent random background. If the flow is considered as an ensem-
ble of structures, then the geometrical representation of flow structures might seem to
be restricted to a well-defined set of curves along the singularities in the data. The first
step in using images as observations in data assimilation is to separate the resolved15

structures, which are large, coherent and energetic from the unresolved ones, which
are supposed to be small, incoherent and bearing little energy. One of the first studies
in this sense can be found in Farge (1992). It shows that the coherent flow component
is highly concentrated in wavelet space. Wavelet analysis is a particular space-scale
representation of signals which has found a wide range of applications in physics, sig-20

nal processing and applied mathematics in the last few years. The literature is rich
regarding wavelets. The interested reader can be referred to Mallat (1989), Coifman
(1990), and Cohen (1992) for example. A major inconvenience of wavelets is that they
tend to ignore the geometric properties of the structure and do not take into account
the regularity of edges. This issue is addressed by the curvelet transform. The curvelet25
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transform is a multiscale directional transform that allows an almost optimal nonadap-
tive sparse representation of objects with edges. It has been introduced by Candès
and Donoho (Candes and Donoho, 2004, 2005a, b; Candes et al., 2006). In R2, the
curvelet transform allows an optimal representation of structures with C2-singularities.
As curvelets are anisotropic, they have a high directional sensitivity and are very effi-5

cient in representing vortex edges.
A function f ∈ L2(R2) is expressed in terms of curvelets as follows:

f =
∑
j ,l ,k

〈
f ,Ψl ,j ,k

〉
Ψl ,j ,k . (21)

where Ψj ,l ,k is the curvelet function at scale j , orientation l and spacial position k10

(k = (k1,k2)). The orientation parameter is the one that makes the major difference with
the wavelet transform. The set of curvelet functions Ψj ,l ,k does not form an orthonormal
basis as it is the case for some families of wavelets. However, the curvelet transform
satisfies the Parseval relation so that the L2-norm of the function f is given by:

‖f ‖2 =
∑
j ,l ,k

|cj ,l ,k |2, (22)15

where cj ,l ,k are the curvelet coefficients given by:

cj ,l ,k =
〈
f ,Ψl ,j ,k

〉
. (23)

In Fig. 4 from Ma et al. (2009), the supports of some wavelets and curvelets are pre-20

sented. The figure shows the strong anisotropy curvelets and suggest that curvelet
representation will give a better adjustment for 2-D-curves.

Figure 5 shows an illustrative comparison of the approximation of a circle by
wavelets and by curvelets. The curvelets provide a better approximation of this per-
fectly anisotropic object. The convergence of curvelets is also better: the best m-term25

approximation fm of a function f has the representation error

‖f − fm‖≈m−1
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for wavelets and

‖f − fm‖≈Cm−2(lnm)3

for curvelets. Another interesting property of curvelets in the framework of variational
data assimilation is that the adjoint of the curvelet transform is the inverse of the5

curvelet transform. Therefore, to represent an image, we will consider the truncation
of its expression in a curvelet frame.

6.1.3 Numerical experiments

In this subsection, we present numerical experiments of direct image assimilation with
observation operators based on the advection of a passive tracer. We used images10

from experimental physics: the drift of a vortex is studied through physical experiment
in the Coriolis platform: it is a circular rotating tank with a diameter of 14 m, located at
Laboratoire des Écoulements Géophysiques et Industriels (LEGI), Grenoble, France.
The rotation of the tank recreates the effect of the Coriolis force in a thin layer of fluid.
The vortex is generated by stirring the fluid and made visible for optical images thanks15

to the addition of the fluorescein that is a passive tracer. Pictures are taken from above
the turntable at regular time intervals to study the evolution of the vortex. A full descrip-
tion of a similar experiment can be found in Flór and Eames (2002). A sequence of
two images from that experiment is used for the motion estimation experiment in this
paper. This sequence is named Coriolis sequence after the name of the platform.20
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6.1.4 Experimental framework

In the configuration of the Coriolis platform as described above, the state variable is
X = (u,v ,h), which satisfy the shallow-water equations
∂tu− (f + ζ )v +∂xB = −ru+ ν∆u,

∂tv + (f + ζ )u+∂yB = −rv + ν∆v ,

∂th+∂x(hu)+∂y (hv) = 0.

(24)

5

Unknowns are the zonal component u(t,x,y) and meridional component v(t,x,y) of
the current velocity and the surface elevation h(t,x,y). They depend on time t and the
two horizontal directions x and y . We define the relative vorticity ζ = ∂xv −∂yu and

the Bernoulli’s potential B = gh+ 1
2 (u2 + v2), where g is the gravity. The Coriolis pa-

rameter on the β-plane is given by f = f0 +βy , ν is the diffusion coefficient and r the10

bottom friction coefficient. In this paper, the following numerical values are used for
the parameters: r = 0.9×10−7 s−1, ν = 0m2 s−1, f0 = 0.25s−1, g = 9.81m s−2 and β =
0.0406m−1 s−1. The simulation is performed on a rectangular domain Ω=]0,L[×]0,H [
representing a sub-domain of the turntable with L = H = 2.525 m. The domain is dis-
cretized on a N×N = 128×128 uniform Arakawa C-type square grid. A finite difference15

scheme is used for space discretization. Time integration is performed using a fourth
order Runge–Kutta scheme. The time step is set to 0.01 s in the turntable experiment,
which corresponds to 14.4 s in the atmosphere.

6.1.5 Assimilation procedure

We consider the problem of recovering the initial state of the fluid U(x,y) = X0(x,y) =20

(u,v ,h)(0,x,y) which constitutes our control variable. Only images are used as obser-
vations. We use image to structure operators based on pixels and the thresholding
of the curvelet decomposition. Three examples of the thresholding operator are con-
sidered: let cj ,l ,k be the curvelet coefficients of the expression of a given function f in
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the frame of curvelets, see Eq. (23). The following thresholding functions are consid-
ered:

1. hard thresholding τ1

τ1(cj ,l ,k) =

{
cj ,l ,k if |cj ,l ,k | ≥ σ,

0 if |cj ,l ,k | < σ,
(25)

5

2. scale by scale thresholding τ2

τ2(cj ,l ,k) =

{
cj ,l ,k if |cj ,l ,k | ≥ σj ,

0 if |cj ,l ,k | < σj ,
(26)

3. hard thresholding zeroing the coarsest scale coefficients τ3; this is similar to the
hard thresholding with the exception that the coefficient associated with each10

curvelet function of the coarsest scale is set to zero.

With the thresholding operator τ, the function f is approximated by:

f̃ =
∑
j ,l ,k

τ(cj ,l ,k)Ψl ,j ,k . (27)

σ and σj in Eqs. (25) and (26) are predefined threshold that depend on the problem15

and on the data. For numerical experiments presented in this section, σ and σj are
defined such that at much 10 % of the total number of coefficients are used.

6.1.6 Numerical results

Figure 8 shows the initial analyzed velocity field with different observation operators.
With the identity observation operator (pixels), the analyzed velocity field shows a non20

symmetric vortex and large motion where there must be no dynamics. With the hard
1407
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thresholding of the curvelet decomposition, the problem of parasitic motion is solved.
On the other hand, the order of magnitude is underestimated. Using hard thresholding
with the coarsest scale coefficients set to zero, the problem of order of magnitude is
solved, although the problem of parasitic motion arises again with less significance.
Using scale by scale thresholding of the curvelet decomposition, the main problems5

(parasitic motion, underestimation of order of magnitude) encountered with other oper-
ators are solved. The result of this set of experiments illustrates the importance of an
adequate observation operator in direct image assimilation.

6.2 Observation operators based on finite-time Lyapunov exponents and
vectors computation10

Ocean tracer images (Sea Surface Temperature and Ocean Color for instance) show
patterns, like fronts and filaments, that characterize the flow dynamics. They are closely
related to the underlying flow dynamics and are referred to as Lagrangian Coherent
Structures (LCS). Their location and shape are the signature of integrated dynamic
information that should be exploited in a data assimilation scheme. For that, one needs15

to quantify the relation between the fluid flow and these patterns. First, Haller and
Yuan (2000) defines an LCS as a material curve (more precisely a material surface in
an extended phase space) which exhibits locally the strongest attraction, repulsion or
shearing in the flow over a finite-time interval. A rigorous mathematical theory that fits
with this physical concept was recently developed in Haller (2011) where quantitative20

and robust criteria are given to identify hyperbolic (i.e. repelling and attracting) LCSs.
However, and despite some caveats, LCSs are usually identified in a practical manner
as maximizing ridges in Finite-Time Lyapunov Exponents (FTLE) fields (Haller, 2001).
FTLE is a scalar local notion that represents the rate of separation of initially neigh-
boring particles over a finite-time window [t0,t0 + T ], T 6= 0. It is defined as the largest25

eigenvalue of the Cauchy–Green strain tensor of the flow map. The corresponding
eigenvector is called the Finite-Time Lyapunov Vector (FTLV). Let X(t) = X(t;X0,t0) be
the position of a Lagrangian particle at time t, which started at X0 at t = t0 and was
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advected by the time-dependent fluid flow U(X,t), X ∈Ω, t ∈ [t0,t0+T ]. An infinitesimal
perturbation δX(t) started at t = t0 from δ0 = δX(t0) around X0 then satisfies, for all
t ∈ [t0,t0 + T ],

DδX(t)
Dt

= ∇U(X(t),t).δX(t),

δX(t0) = δ0,X(t0) = X0.
(28)

5

Let λmax be the largest eigenvalue of the Cauchy–Green strain tensor

∆ =
[
∇φt0+T

t0
(X0)

]∗ [
∇φt0+T

t0
(X0)

]
, (29)

where φt
t0

: X0 7→ X(t;X0,t0) represents the flow map of the system (it links the location
X0 of a Lagrangian particle at t = t0 to its position X(t;X0,t0) at time t 6= t0). The forward10

FTLE at the point X0 ∈Ω and for an advection time T starting at t = t0 is defined as

σ
t0+T
t0

(X0) =
1

|T |
ln
√
λmax(∆). (30)

FTLV is the eigenvector associated with λmax. The FTLE thus represents the growth
factor of the norm of the perturbation δX0 started around X0 and advected by the flow15

after the finite advection time T . Maximal stretching occurs when δX0 is aligned with
the FTLV. Backward FTLE and FTLV (BFTLE and BFTLV) are similarly defined, with
the time direction being inverted, in Eq. (28).

BFTLE (BFTLV) is a scalar (vector) that is computed at a given location X0. Seeding
a domain with particles initially located on a grid leads to the computation of discretized20

scalar (BFTLE) and vector (BFTLV) fields. Ridges of the BFTLE field approximate at-
tracting LCSs (Haller, 2011). An example of a BFTLE and corresponding BFTLV orien-
tation maps, computed from a mesoscale (1/4◦) time-dependent surface velocity field
coming from a simulation of the North-Atlantic ocean, is given in Fig. 9. The BFTLE
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field shows contours that correspond reasonably well to the main structures such as
filaments, fronts and spirals that appear in the Sea Surface Temperature (SST) field of
the same simulation (see Fig. 10 left panel). Note that this field can be distinguished
by spatial observations. Also the BFTLVs align with the gradients of this tracer field:
Figs. 9 and 10 (right panels) show that BFTLVs and SST gradients have similar orien-5

tations. These similarities illustrate the strong link between the tracer field patterns and
the underlying flow dynamics. In order to exploit the properties of BFTLE and BFTLV
in a direct image assimilation framework, one needs to quantify this link by identifying
the appropriate structure space.

The almost-lagrangian nature of FTLE (Lekien et al., 2005) permits the interpretation10

of the BFTLE field as a tracer field which in turn can be considered as an image. In
other words, the BFTLE can be used to define a model-to-image operator. This thus
makes possible the comparison between BFTLE and the corresponding ocean tracer
field in the structure space once the image-to-structure operator has been defined.
Note that this model-to-image operator produces images with stronger discontinuities15

than operators based on passive tracer advection: the numerical diffusion softens the
discontinuities which makes the comparison with high-resolution satellite images less
accurate.

The alignment of the BFTLV with the tracer gradients allows the direct link of the
structured information contained in the image with the flow dynamics: if structures are20

identified as the orientation of the gradient of the image, then the observation operator
is a strict model-to-structure operator: it is not defined as a composition of a model-to-
image operator with an image-to-structure operator.

Using observation operators based on BFTLE-V computation supposes that the cor-
responding image cost functions Eq. (16) are sensitive to perturbations on the control25

variable X0. We also expect that the cost functions admit a minimum value at the ref-
erence (i.e. non-perturbed) state. Such prerequisites have been verified in Titaud et al.
(2011) on simulated ocean tracer fields (SST and Mixed Layer Phytoplankton). Fig-
ure 11 shows the behaviour of the image cost functions, for each BFTLE and BFTLV
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based observation operator, with respect to the amplitude of nine random perturbations
applied to a reference velocity field. The left panel corresponds to a BFTLE-based ob-
servation operator that maps the control variable (time-dependent surface velocity field)
to the space of binary images where the image ridges are modelled (see Fig. 12). The
right panel corresponds to a BFTLV-based observation operator: the misfit is defined5

as an angular error. These results clearly indicates that tracer images can be exploited
to reverse a velocity field using a direct image assimilation scheme and BFTLE-V com-
putations. See Titaud et al. (2011) for more details on the experimental setup and the
analysis of the results.

7 Conclusions10

Data assimilation is the science of coupling heterogeneous information coming from
different sources: model, statistics, observations. During the last two decades, data as-
similation has shown a dramatic development, mainly in meteorology and oceanogra-
phy. It is beginning to be used in many other fields like agronomy, economy or medicine.
Data assimilation is a universal problem if we want to understand and predict the evo-15

lution of a system governed by a corpus of deterministic or random equations. This
is especially true if, in reality, any realization of the system is unique. More and more,
information is available as images or image sequences of the observed system. Their
dynamics often permit a better understanding of the system. However the information
contained in images is still mainly used in a qualitative way by experts of the application20

domain.
In this paper, we described two frameworks where data assimilation schemes can

deal with image information. First, images and sequence of images may be post-
processed in order to extract some indirect (pseudo) observations that are related
to the state variables of the model. The most common example is the motion vec-25

tor field which can be inferred using motion estimation techniques. The result of post-
processing is then used as a conventional observation in the data assimilation scheme.
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This approach has several limitations which should be overcome by the Direct Image
Assimilation approach. In this framework, we consider the image or the image se-
quence as regular observations which must be linked to the control variable using an
appropriate observation operator. For dynamical systems, the pertinent information that
should be observed is brought by the structures of the image (e.g. the discontinuities).5

The observation operator must then map the control space into the image structure
space. We show some examples of direct assimilation techniques. The corresponding
results are very encouraging.

However, we are still far from an operational use of the assimilation of images. We
need to keep in mind that almost two decades were necessary to make variational10

data assimilation operational in the primary meteorological centers worldwide. Many
questions and difficulties remain both from the theoretical and practical points of view:

1. What are the most adapted structure spaces defining images? From the compu-
tational point of view, images have to live in a reduced space with respect to the
trivial definition as an ensemble of pixels.15

2. What topology should be used in the space of images? In this paper we have
used L2 type metrics which tend to regularize the estimated control variable. We
have to keep in mind that the information in images is borne by their singularities,
so that other metrics, such as L1, have to be considered.

3. How to use images to guide nesting of models?20

Outside of geophysics, there are many fields of application: aeronautics, especially
for non-stationary flows, medicine and other fields for which images are an important
source of information.
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14 F.-X. Le Dimet and al.: Toward the Assimilation of Images

Fig. 1a. Satellite observations: evolution from 1996 to 2010 (Courtesy of ECMWF)

Fig. 1b. Atmospheric Motion Vector (AMV) coverage by geostationary satellites

Fig. 1c. Data coverage by polar orbiting satellites equipped with AMSU-A radiometer

Figure 1a. Satellite observations: evolution from 1996 to 2010 (Courtesy of ECMWF).
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14 F.-X. Le Dimet and al.: Toward the Assimilation of Images

Fig. 1a. Satellite observations: evolution from 1996 to 2010 (Courtesy of ECMWF)

Fig. 1b. Atmospheric Motion Vector (AMV) coverage by geostationary satellites

Fig. 1c. Data coverage by polar orbiting satellites equipped with AMSU-A radiometer

Figure 1b. Atmospheric Motion Vector (AMV) coverage by geostationary satellites.
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14 F.-X. Le Dimet and al.: Toward the Assimilation of Images

Fig. 1a. Satellite observations: evolution from 1996 to 2010 (Courtesy of ECMWF)

Fig. 1b. Atmospheric Motion Vector (AMV) coverage by geostationary satellites

Fig. 1c. Data coverage by polar orbiting satellites equipped with AMSU-A radiometer
Figure 1c. Data coverage by polar orbiting satellites equipped with AMSU-A radiometer.
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F.-X. Le Dimet and al.: Toward the Assimilation of Images 15

Fig. 2. Image of Sea Surface Temperature and Chlorophyl
(Courtesy of NASA for research and educational use, ocean-
color.gsfc.nasa.gov)

Fig. 3. Performance of the forecast: Anomaly Correlation at 500hPa
height forecast (Courtesy of ECMWF).

Fig. 4. Support of atoms of multiscale decomposition: wavelet (left)
and curvelet (right)

Fig. 5. Schematic view of a single scale approximation of a circle
with multiscale decomposition wavelet (left) and curvelet (right)

Figure 2. Image of Sea Surface Temperature and chlorophyl (courtesy of NASA for research
and educational use, http://oceancolor.gsfc.nasa.gov).

1420

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/1381/2014/npgd-1-1381-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/1381/2014/npgd-1-1381-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://oceancolor.gsfc.nasa.gov


NPGD
1, 1381–1430, 2014

Toward the
assimilation of

images

F.-X. Le Dimet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

F.-X. Le Dimet and al.: Toward the Assimilation of Images 15

Fig. 2. Image of Sea Surface Temperature and Chlorophyl
(Courtesy of NASA for research and educational use, ocean-
color.gsfc.nasa.gov)

Fig. 3. Performance of the forecast: Anomaly Correlation at 500hPa
height forecast (Courtesy of ECMWF).

Fig. 4. Support of atoms of multiscale decomposition: wavelet (left)
and curvelet (right)

Fig. 5. Schematic view of a single scale approximation of a circle
with multiscale decomposition wavelet (left) and curvelet (right)Figure 3. Performance of the forecast: anomaly correlation at 500 hPa height forecast (courtesy

of ECMWF).
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F.-X. Le Dimet and al.: Toward the Assimilation of Images 15

Fig. 2. Image of Sea Surface Temperature and Chlorophyl
(Courtesy of NASA for research and educational use, ocean-
color.gsfc.nasa.gov)

Fig. 3. Performance of the forecast: Anomaly Correlation at 500hPa
height forecast (Courtesy of ECMWF).

Fig. 4. Support of atoms of multiscale decomposition: wavelet (left)
and curvelet (right)

Fig. 5. Schematic view of a single scale approximation of a circle
with multiscale decomposition wavelet (left) and curvelet (right)

Figure 4. Support of atoms of multiscale decomposition: wavelet (left) and curvelet (right).
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Fig. 2. Image of Sea Surface Temperature and Chlorophyl
(Courtesy of NASA for research and educational use, ocean-
color.gsfc.nasa.gov)

Fig. 3. Performance of the forecast: Anomaly Correlation at 500hPa
height forecast (Courtesy of ECMWF).

Fig. 4. Support of atoms of multiscale decomposition: wavelet (left)
and curvelet (right)

Fig. 5. Schematic view of a single scale approximation of a circle
with multiscale decomposition wavelet (left) and curvelet (right)

Figure 5. Schematic view of a single scale approximation of a circle with multiscale decompo-
sition wavelet (left) and curvelet (right).
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16 F.-X. Le Dimet and al.: Toward the Assimilation of Images

Fig. 6. Evolution of a storm on western Europe: April 28, 2008 (left) and April 29, 2008 (right).
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Fig. 7. Schematic representation of the use of images in Data Assimilation: Assimilation of pseudo-observations (left); Direct assimilation
of images (right).

Figure 6. Evolution of a storm on western Europe: 28 April 2008 (left) and 29 April 2008 (right).
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16 F.-X. Le Dimet and al.: Toward the Assimilation of Images

Fig. 6. Evolution of a storm on western Europe: April 28, 2008 (left) and April 29, 2008 (right).
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Fig. 7. Schematic representation of the use of images in Data Assimilation: Assimilation of pseudo-observations (left); Direct assimilation
of images (right).Figure 7. Schematic representation of the use of images in data assimilation: assimilation of

pseudo-observations (left); direct assimilation of images (right).
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F.-X. Le Dimet and al.: Toward the Assimilation of Images 17

Fig. 8. Analysed initial velocity field computed by direct image sequence assimilation with different image observation operators: Identity
operator (top left); curvelet decomposition and hard thresholding (top left); curvelet decomposition and scale by scale thresholding (bottom
left); curvelet decomposition and hard thresholding zeroing coarsest scale (bottom right).

Figure 8. Analysed initial velocity field computed by direct image sequence assimilation with
different image observation operators: identity operator (top left); curvelet decomposition and
hard thresholding (top right); curvelet decomposition and scale by scale thresholding (bottom
left); curvelet decomposition and hard thresholding zeroing coarsest scale (bottom right).
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18 F.-X. Le Dimet and al.: Toward the Assimilation of Images

Fig. 9. Backward FTLE (day−1) (left) and corresponding Backward FTLV orientations (angular degree) (right) computed from the surface
velocity of a simulation of the North Atlantic Ocean.

Fig. 10. Sea Surface Temperature field (left) and the corresponding orientations (angular degree) of the gradients (right). SST field comes
from the same ocean simulation from which the BFTLE-Vs were computed to produce fields in Fig. 9

Figure 9. Backward FTLE (day−1) (left) and corresponding backward FTLV orientations (an-
gular degree) (right) computed from the surface velocity of a simulation of the North Atlantic
Ocean.
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18 F.-X. Le Dimet and al.: Toward the Assimilation of Images

Fig. 9. Backward FTLE (day−1) (left) and corresponding Backward FTLV orientations (angular degree) (right) computed from the surface
velocity of a simulation of the North Atlantic Ocean.

Fig. 10. Sea Surface Temperature field (left) and the corresponding orientations (angular degree) of the gradients (right). SST field comes
from the same ocean simulation from which the BFTLE-Vs were computed to produce fields in Fig. 9

Figure 10. Sea Surface Temperature field (left) and the corresponding orientations (angular
degree) of the gradients (right). SST field comes from the same ocean simulation from which
the BFTLE-Vs were computed to produce fields in Fig. 9.
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F.-X. Le Dimet and al.: Toward the Assimilation of Images 19

Fig. 11. sensitivity of the misfit between BFTLEV and SST fields with respect to the amplitude of nine random perturbations applied to a
reference velocity field. Left: misfit between BFTLE and SST fields computed in the space of binary images (after the application of the
image-to-structure operator). Right: angular misfit between BFTLV and SST gradients.

Fig. 12. Structures extraction: binarization of the FTLE(left) and SST(right) gradient fields of Figs. 9(left) and 10(right) using a basic
threshold technique.

Figure 11. Sensitivity of the misfit between BFTLEV and SST fields with respect to the am-
plitude of nine random perturbations applied to a reference velocity field. Left: misfit between
BFTLE and SST fields computed in the space of binary images (after the application of the
image-to-structure operator). Right: angular misfit between BFTLV and SST gradients.
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Fig. 11. sensitivity of the misfit between BFTLEV and SST fields with respect to the amplitude of nine random perturbations applied to a
reference velocity field. Left: misfit between BFTLE and SST fields computed in the space of binary images (after the application of the
image-to-structure operator). Right: angular misfit between BFTLV and SST gradients.

Fig. 12. Structures extraction: binarization of the FTLE(left) and SST(right) gradient fields of Figs. 9(left) and 10(right) using a basic
threshold technique.

Figure 12. Structures extraction: binarization of the FTLE (left) and SST (right) gradient fields
of Figs. 9 (left) and 10 (right) using a basic threshold technique.
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